
JCC
A pure, no third-party dependencies C compiler

Why?!?

� Good re-introduction back into C after a long period of not using it

� Forces me to build many of my own data structures and designs –
the standard library is extremely sparse

� C is simple enough a language that an end-goal of a bootstrapping
compiler is viable

Design goals
� No third-party dependencies

� With one caveat – GraphViz command line tool is used for
visualizing parts of the parser and IR generator

Style &
naming goals

� For this project, I’ve mainly adopted the LLVM C-style

� This is enforced by `clang-format`, but is quite a new code style to
me and potentially also you

� Avoids typedefs for aggregate types – you explicitly write `struct
my_type` for every struct variable!

� Fewer newlines than a lot of other style conventions…
� Lots of top-level files!

� This style was chosen as something new, and as an experiment

High-level
design

� Frontend – Parser + Lexer

� Middle sections – IR building, generation, and lowering

� Backend – machine code emitting, object file creation, and linking

� Major emphasis on reliability and memory-safety
� Having worked extensively with Rust recently, I am trying to pull

across many of the design patterns around ownership to help
minimize the landmine that is C memory management

Frontend

� Compilation is on a per-file basis

� Preprocessor is work-in-progress!
� Lower-priority as it is relatively simple J

� Handwritten lexer/parser pair which work in lockstep
� Lexer provides token on-demand to the parser, rather than entirely

tokenizing text

� Parser is a traditional recursive-descent parser with arbitrarily long
lookup as is required by the C11 grammar

� The parser generates a top level `ast_translationunit` which
contains the AST for the file in a tree-like data-structure

� JCC is very heavy on intrusive trees and graphs which contain
explicit links between structs – this is a natural consequence of using
a language without any standard vector, tree, or graph types

IR Building

� The tree is walked downwards, statement-by-statement, and IR is
generated as it goes

� The 3 key data structures for IR:
� `ir_basicblock` – a set of instructions which will always execute

together
� Basicblock start/ends are either branches or branch targets, and so

instructions before/after may not always execute together

� `ir_stmt` - a set of instructions that have a sequence point after
them

� Operations in an `ir_stmt` can be arbitrarily reordered (such as
argument evaluation in C), but cannot be reordered between
`ir_stmt` s unless the compiler can definitively prove this is not
visible to the program

� `ir_op` - the actual type representing a single operation

ir_op

ir_stmt

ir_basicblock

GraphViz

Something a
bit more
interesting…

Lowering

� Performs platform-specific changes required before we can emit
� In the future, also optimisations

� Still generates platform-independent IR

� This allows lowering to occur and for us to then re-run
optimization passes

� Ideal for performance

� Currently only a supports AArch64 platform
� (Others in the works)

Lowering Ex

ARM64 has no modulo
instruction!

RegAlloc

� As we saw earlier, our SSA representation generates a new
named-value for every single expression in the program

� A given SSA variable is SDMU – Single Definition Multiple Use

� In real life, we do not have an infinite number of registers, so we
must break this SSA form and assign each value a register from a
fixed set

� Currently, we use a linear-scan approach to register interval
� A graph-coloring based register allocator is my final plan and is

currently in the works

RegAlloc
(cont.)

� The register allocator works via a two-pass allocation approach:
� This pass assigns "trivial" registers and marks which variables need

spilling

� In first pass, we insert `storelcl` and `loadlcl` instructions
with appropriate locals for variables marked as `REG_SPILLED`

� We then re-run allocation, which will assign all registers

� Because store/load pairs are always directly around their use-sites,
we guarantee that the second allocation run will never generate
new spills

� The register allocator is platform-agnostic
� It has an upper-bound on how many registers it may allocate, and it

is up to late stages of the pipeline to transform this index into an
actual register

� Floating-point instructions are not yet generated by JCC, but they
will be handled without major changes to the regalloc – a second
pass will be run for instructions that need to read/write from FP
registers

Emitting

� Once all lowering and register allocation has occurred, the
program is ready to be emitted into machine code

� It is still in SSA, although a slightly weaker version of it often called
degenerate SSA

� It retains all “real” properties of SSA but there are now instructions
such as moves & stores that cannot be moved around as they could
in normal SSA, due to the register allocation

� We emit the IR directly into AArch64 machine code, rather than
assembly

� Relatively simple emitter as AArch64 is fixed size

Object-file &
Linking

� Final stages – build an object file from your machine code
generated by each function, and link them together

� Object file building is currently hand-written for the Mach-O
object file format used by macOS

� Work-in-progress on ELF (Linux) and PE (Windows) object files

� Mach-O object file builder:
� Takes the machine code the compiled functions + a set of symbols to

export (such as the `_main` function)

� Linking is handled by the system linker
� Still executed by compiler

Lessons
Learnt:
Memory
Management

Lessons
Learnt:
Memory
Management

� Using arena-style allocation has many advantages
� Performance – prevents lots of malloc/free calls
� Simplicity – allows tying lifetimes of allocations to the compiler and

not having to worry about them
� Robustness – lifetime tying means memory leaks are much harder to

cause

� Has downsides too!
� Principally, higher memory usage

Lessons
Learnt: C-style
encapsulation

� Create-free pattern with pseudo-instance methods

� Opaque pointer which consumer can only pass around
� Helps keep everything together
� Keeps all access to a given struct within one file

