JCC

A pure, no third-party dependencies C compiler

* Good re-introduction back into C after a long period of not using it

* Forces me to build many of my own data structures and designs —
the standard library is extremely sparse

- Cis simple enough a language that an end-goal of a bootstrapping
compiler is viable

* No third-party dependencies

- With one caveat — GraphViz command line tool is used for
visualizing parts of the parser and IR generator

Design goals

* For this project, I've mainly adopted the LLVM C-style

- This is enforced by "clang-format’, but is quite a new code style to
me and potentially also you

St | & - Avoids typedefs for aggregate types — you explicitly write "struct
y e my_type" for every struct variable!

NaMmin g g OQq |S - Fewer newlines than a lot of other style conventions...

- Lots of top-level files!

* This style was chosen as something new, and as an experiment

Frontend — Parser + Lexer

Middle sections — IR building, generation, and lowering

Backend — machine code emitting, object file creation, and linking

High-level

Major emphasis on reliability and memory-safety

* Having worked extensively with Rust recently, | am trying to pull
across many of the design patterns around ownership to help
minimize the landmine that is C memory management

design

- Compilation is on a per-file basis

* Preprocessor is work-in-progress!
- Lower-priority as it is relatively simple ©

* Handwritten lexer/parser pair which work in lockstep

* Lexer provides token on-demand to the parser, rather than entirely
tokenizing text

Frontend - Parser is a traditional recursive-descent parser with arbitrarily long
lookup as is required by the C11 grammar

- The parser generates a top level "ast_translationunit™ which
contains the AST for the file in a tree-like data-structure
 JCCis very heavy on intrusive trees and graphs which contain

explicit links between structs —this is a natural consequence of using
a language without any standard vector, tree, or graph types

* The tree is walked downwards, statement-by-statement, and IR is
generated as it goes

* The 3 key data structures for IR:
* 'ir basicblock —asetofinstructions which will always execute
together
: : * Basicblock start/ends are either branches or branch targets, and so
I R B Ul | d 1N g instructions before/after may not always execute together

* 'ir stmt’ -asetofinstructions that have a sequence point after
them

* Operationsinan 'ir stmt' can be arbitrarily reordered (such as
argument evaluation in C), but cannot be reordered between
"ir stmt’ sunlessthe compiler can definitively prove this is not
visible to the program

* 'ir op -the actual type representing a single operation

enum ir_op_flags { IR_OP_FLAG_NONE = 0, IR_OP_FLAG_MUST_SPILL

struct 1dir_op {
size_t 1d;
enum ir_op_ty ty;

enum ir_op_flags flags;
struct dir_op_var_ty var_ty;

struct dir_op *pred;

struct dir_op *succ;

struct NSt S A stne ;

union {
SElfliEE 17 _©p_ chste Chsies
struct dir_op_binary_op binary_op;
struct dir_op_ret ret;
struct ir_op_store_lcl store_1lcl;
struct ir_op_load_1lcl load_1lcl;
struct ir_op_br_cond br_cond;

struct dir_op_phi phi;
struct ir_op_mov mov;

I

unsigned long reg;
unsigned long lcl_-tidx;
void *metadata;

ir_basicblock *

ir_stmt *
ir_stmt

struct ir_basicblock {
size_t 1id;

struct var_table var_table;

struct dir_builder *irb;

struct 1dir_basicblock xpred;
struct 1dir_basicblock *succ;

S trUCERIFESTENE RXfilESE:
struct dir_stmt xlast;

struct dir_basicblock x*preds;
size_t num_preds;

enum ir_basicblock_ty ty;
union {
struct ir_basicblock_merge merge;
struct ir_basicblock_split split;
}s

size_t function_offset;

void *metadata;

BB @ 000

50 (132) =1
br.cond %0, TRUE (Q1), FALSE (Q2)

/

BB @ 001

GraphViz

%2 (132) = 10
return %2

\

BB @ 002

$4 (132) =5
return %4

BB @ 000

(132) = 5
(132) = 1
: .cond %1, TRUE (@1), FALSE (@Q2)
Something a r/
bit more ° BB € 001
interesting... 23 (i32) = 10
br @2

\

BB @ 002

%5 (132) = phi [%0, %3]
return %5

* Performs platform-specific changes required before we can emit
* In the future, also optimisations

- Still generates platform-independent IR

LOwe ri ng » This allows lowering to occur and for us to then re-run
optimization passes
> ldeal for performance

* Currently only a supports AArch64 platform
* (Others in the works)

ARM®64 has no modulo

instruction!
uis: & = BB @ 000
int answer; %0 (i32) = 10
$1 (132) = 7
F((a b)){ %6 (132) = %0 s% °1
answer = 0: br.cond %6, TRUE (FALSE (@2)
clse { / \
answer =
BB @ 001 BB @ 002
answer ; 52 (132) =0 %3 (132) =1
br @3 br @3
BB @ 003
%8 (132) = phi [%2, %3]
return %8

BB @ 000
0 (132) = 10
$1 (132) = 7
%10 (132) = %0 s/ %
$12 (132) = %10 * °1
%60 (132) = %0 - %12
br.cond %6, TRUE (@1l), FALSE (@Q2)
br @1)
BB @ 001 BB @ 002
%2 (132) =0 $3 (132) =1
br @3 br @3
BB @ 003
$8 (i32) = phi [%2, %3]
return %8

- As we saw earlier, our SSA representation generates a new
named-value for every single expression in the program
* A given SSA variable is SDMU - Single Definition Multiple Use

* In real life, we do not have an infinite number of registers, so we
must break this SSA form and assign each value a register from a

RegAlloc fixed set

* Currently, we use a linear-scan approach to register interval

* A graph-coloring based register allocator is my final plan and is
currently in the works

* The register allocator works via a two-pass allocation approach:

* This pass assigns "trivial" registers and marks which variables need
spilling

* In first pass, we insert ‘storelcl and 'loadlcl instructions
with appropriate locals for variables marked as REG SPILLED
* We then re-run allocation, which will assign all registers

* Because store/load pairs are always directly around their use-sites,
we guarantee that the second allocation run will never generate
new spills

RegAlloc

(cont.)

* The register allocator is platform-agnostic
* It has an upper-bound on how many registers it may allocate, and it
is up to late stages of the pipeline to transform this index into an
actual register

* Floating-point instructions are not yet generated by JCC, but they
will be handled without major changes to the regalloc — a second
pass will be run for instructions that need to read/write from FP
registers

* Once all lowering and register allocation has occurred, the
program is ready to be emitted into machine code

* Itis still in SSA, although a slightly weaker version of it often called
degenerate SSA

E m |tt| N * It retains all “real” properties of SSA but there are now instructions
g such as moves & stores that cannot be moved around as they could
in normal SSA, due to the register allocation

- We emit the IR directly into AArch64 machine code, rather than
assembly
* Relatively simple emitter as AArch6y is fixed size

- Final stages — build an object file from your machine code
generated by each function, and link them together

* Object file building is currently hand-written for the Mach-O
object file format used by macOS

ObjECt-ﬁ |e & Work-in-progress on ELF (Linux) and PE (Windows) object files
|_| N kl ng - Mach-O object file builder:

- Takes the machine code the compiled functions + a set of symbols to
export (such asthe © main’ function)

* Linking is handled by the system linker
- Still executed by compiler

#ifndef ALLOC_H
#define ALLOC_H

#include <stdlib.h>

struct arena_allocator;
void arena_allocator_create(struct arena_allocator **xallocator);

void arena_allocator_free(struct arena_allocator **allocator);

*arena_alloc(struct arena_allocator *allocator, size_t size);

xarena_alloc_strcpy(struct arena_allocator *allocator, const char #*str);

void *arena_realloc(struct xallocator, void *ptr, size_t size);

#endif

* Using arena-style allocation has many advantages
* Performance — prevents lots of malloc/free calls

LeSSO ns » Simplicity — allows tying lifetimes of allocations to the compiler and
Learnt:

not having to worry about them
- Robustness — lifetime tying means memory leaks are much harder to

Memory cause
Management * Has downsides too!

* Principally, higher memory usage

* Create-free pattern with pseudo-instance methods

Lessons

- Opaque pointer which consumer can only pass around

Lea rnt: C-StYle * Helps keep everything together
: - Keeps all access to a given struct within one file
encapsulation

